“Lalhoun

Institutional Archive of the Naval Pastgraduate School

Calhoun: The NPS Institutional Archive
DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

2011-09

A comparative analysis of the Snort and
Suricata intrusion-detection systems

Albin, Eugene

Monterey, California. Naval Postgraduate School

http://hdl.handle.net/10945/5480

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun

Calhoun is the Maval Postgraduate School's public access digital repository for

‘: DUDLEY research materials and institutional publications created by the NPS community.
ﬂ““ Calhoun is named for Professor of Mathematics Guy K. Calhoun, NPS's first

m“ KNOX appointed — and published — scholarly author,

LIBRARY Dudley Knox Library / Maval Postgraduate School
411 Dyer Road / 1 University Circle
Monterey, California USA 93943

hitp://www.nps.edu/library

P

NAVAL
POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

A COMPARATIVE ANALYSIS OF THE SNORT AND
SURICATA INTRUSION-DETECTION SYSTEMS

by
Eugene Albin
September 2011
Thesis Advisor: Neil Rowe
Second Reader: Rex Buddenberg

Approved for public release; distribution is unlimited

THIS PAGE INTENTIONALLY LEFT BLANK

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
September 2011 Master’s Thesis
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

A Comparative Analysis of the Snort and Suricata Intrusion-Detection Systems
6. AUTHOR(S) Eugene Albin

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Naval Postgraduate School REPORT NUMBER
Monterey, CA 93943-5000

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
N/A AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy
or position of the Department of Defense or the U.S. Government. IRB Protocol number NA.

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release; distribution is unlimited A

13. ABSTRACT (maximum 200 words)

Our research focuses on comparing the performance of two open-source intrusion-detection systems, Snort and
Suricata, for detecting malicious activity on computer networks. Snort, the de-facto industry standard open-source
solution, is a mature product that has been available for over a decade. Suricata, released two years ago, offers a new
approach to signature-based intrusion detection and takes advantage of current technology such as process multi-
threading to improve processing speed. We ran each product on a multi-core computer and evaluated several hours of
network traffic on the NPS backbone. We evaluated the speed, memory requirements, and accuracy of the detection
engines in a variety of experiments. We conclude that Suricata will be able to handle larger volumes of traffic than
Snort with similar accuracy, and thus recommend it for future needs at NPS since the Snort installation is approaching
its bandwidth limits.

14. SUBJECT TERMS 15. NUMBER OF
Intrusion-detection System (IDS), Snort, Suricata, Information Technology, Information Assurance, PAGES
Network-Security Monitoring (NSM), Intrusion Prevention System (IPS) 68
16. PRICE CODE

17. SECURITY 18. SECURITY 19. SECURITY 20. LIMITATION OF
CLASSIFICATION OF CLASSIFICATION OF THIS CLASSIFICATION OF ABSTRACT
REPORT PAGE ABSTRACT

Unclassified Unclassified Unclassified uu

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18

THIS PAGE INTENTIONALLY LEFT BLANK

il

Approved for public release; distribution is unlimited

A COMPARATIVE ANALYSIS OF THE SNORT AND SURICATA INTRUSION-
DETECTION SYSTEMS

Eugene Albin
Lieutenant Commander, United States Navy
B.M., Southwestern University, 1995

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN INFORMATION TECHNOLOGY MANAGEMENT

from the

NAVAL POSTGRADUATE SCHOOL

September 2011
Author: Eugene Albin
Approved by: Neil Rowe, PhD
Thesis Advisor
Rex Buddenberg

Second Reader

Dan Boger, PhD
Chair, Department of Information Sciences

il

THIS PAGE INTENTIONALLY LEFT BLANK

v

ABSTRACT

Our research focuses on comparing the performance of two open-source intrusion-
detection systems, Snort and Suricata, for detecting malicious activity on computer
networks. Snort, the de-facto industry standard open-source solution, is a mature product
that has been available for over a decade. Suricata, released two years ago, offers a new
approach to signature-based intrusion detection and takes advantage of current
technology such as process multi-threading to improve processing speed. We ran each
product on a multi-core computer and evaluated several hours of network traffic on the
NPS backbone. We evaluated the speed, memory requirements, and accuracy of the
detection engines in a variety of experiments. We conclude that Suricata will be able to
handle larger volumes of traffic than Snort with similar accuracy, and thus recommend it

for future needs at NPS since the Snort installation is approaching its bandwidth limits.

THIS PAGE INTENTIONALLY LEFT BLANK

vi

TABLE OF CONTENTS

I INTRODUCTION.....cuinuinuinennnsnnsnnsanssessssssssessssssssassassassasssssssssssssssssssssassassassssssssssssses 1
II. PREVIOUS WORK ..ucoiiuictiiinsninsnesinssncssesssessessasssesssessssssassssssasssassssssssssasssassassssssss 7
III. DESCRIPTION OF METHODOLOGY AND EXPERIMENTS.........cccceeueruenueene 13
A. EXPERIMENTAL SETUPuuuoiniinicsnnnensaensansnsssncssessesssessasssssssssassssssaes 14
B. EXPERIMENTS ...cuuinininininsnnsnnssessessnssessssssssasssessssssssssssssssssssassassssssssssssasss 16
IV. DISCUSSION OF RESULTScconiniinensuecsnnsensanssanssessaecsasssssssessasssasssessasssssssssasss 21
A. EXPERIMENT ONE....uuouiiiiinnnennennnnnisnssensanssssssssessessssssssassassassassassssssssss 22
B. EXPERIMENT TWO....iiiieininiensnnnsnnssessaessenssessasssessssssassssssssssassssssace 27
C. EXPERIMENT THREEiiinninecnninneninsnnsneseessesssssssessssassssssnes 30
V. CONCLUSION cuuciiiiinienesensaecsanssnsssncssessesssessassssssssssssssassasssassssssssssssssassasssassssssssssasss 37
A. DISCUSSION ..uueiiiiuiinenenensnnsansanssessesssssessssssssassassasssssssssssssssassassassassassssssssss 37
B. RECOMMENDATIONcoiiininsuensnnsancssnssanssessanssesssessasssassasssassssssssssasssssae 38
C. FUTURE RESEARCHuouiiiiinrenennnnnininsnssanssessssssssesssssssssssassassssssssssssasss 39
APPENDIX A ouuiininiinininecsnnssnessessacssanssesssnssasssessssssassssssssssasssassasssassssssssssasssssssessassssssssssasss 41
ANNEX 1 TABLE OF COMBINED SURICATA AND SNORT ALERTS
DURING TESTING....cciinineesensaecsnnsancssessasssessasssassssssasssassssssassssssssssassssssae 41
ANNEX 2 EXAMPLE PYTBULL REPORTS FOR SURICATA AND
SNORT cceeeriertinsnesinssnesnessnessessasssesssesssessasssessassssssssssssssasssassasssassssssssssasssassae 42
APPENDIX B ..uueiiiieiinieninntnnnenncsninsssnessessscsssssssssssssssssssassssssassssssssssssssasssassassssessassasss 45

ANNEX1 EMERGING THREATS (ET) AND VULNERABILITY
RESEARCH TEAM (VRT) RULE CATEGORIES USED IN

EXPERIMENTS. c..ucooiiniiiininnensnecnnsancssnssasssessasssssssessasssassssssassssssssssasssassace 45
LIST OF REFERENCEScuuuuiiiiiiininnnennisnnssissesssnssssssssssssssssssssesssssssssssassassasssssssssssssssssss 47
INITIAL DISTRIBUTION LIST ..uuccoiininniininnnnsnensnnsaenssncsacssessaessasssssssessasssassssssasssssssssasss 49

vii

THIS PAGE INTENTIONALLY LEFT BLANK

viii

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.

Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.

LIST OF FIGURES

Suricata multi-thread design (From OISF, 2011C) .cccvevviiiiiiiiiniiiiiiiiieeee, 9
Suricata multi-CPU affinity (From OISF, 2011¢) ...cccovvvviiiiniieeiieeieeeveeeee, 9
EXperiment ONe SELUP.......ccueeeriieiriieiiiie ettt ettt ebee e sibeessaeeeens 17
Experiment Three logical network diagramccceeeevveerieennieeenieeeieeeeenn 18
SUTICALA CPU USE ...oiiuiiiiiiiieiiieecie ettt 22
SNOTE CPU USE..coniiiiiiiiiiiiieeieeee ettt et 23
SUricata RAM USE ..ccouiiiiiiiiiiieeniieeeite ettt ettt 23
SNOTt RAM USE....uuiiiiiiiiiiiiiiieee ettt 24
Suricata Packet Ratecooviiiiiiiiiiiieiecceeeeee e 25
Snort Packet Rate......cc..eoiiiiiiiiiiee e 25
Suricata and Snort Combined Alert Frequencyccocceeviieiniiiiniiceinieennne 26
Suricata runmode performance for 48 CPUS..........ccociievciieeniieeieeeieeeieee 28
Suricata runmode performance for 4 CPUS.........cccooviiiiiiiiniieeniiciieeeiee e 29
Suricata detect thread ratio performance 4-CPUcccceviiiiiiniiincnnienne. 29

X

THIS PAGE INTENTIONALLY LEFT BLANK

Table 1.
Table 2.
Table 3.

LIST OF TABLES

Summary of Snort Alerts

Summary of Suricata Alerts

Snort and Suricata Recall and PreciSionceeevvvvvviiiiiiciieeeeieiiiiiieeieeeeeeeeneens

X1

THIS PAGE INTENTIONALLY LEFT BLANK

Xii

CPU
CVE
DHS
DoS
ERN
ET
FTP
HIDS
HTTP
ICMP
IDS
IP

IPS
LFI
MSSQL
NSM
NIC
NIDS
NPS
OISF
PCAP
PCRE

PDF

LIST OF ACRONYMS AND ABBREVIATIONS

Central Processing Unit

Common Vulnerabilities and Exposures
Department of Homeland Security
Denial of Service

Education Research Network
Emerging Threats

File Transfer Protocol

Host-based Intrusion-Detection System
Hyper Text-Transfer Protocol

Internet Control Message Protocol
Intrusion-Detection System

Internet Protocol

Intrusion-Prevention System

Local File Inclusion

MicroSoft Structured Query Language
Network-Security Monitoring

Network Interface Card
Network-based Intrusion-Detection System
Naval Postgraduate School

Open Information Security Foundation
Packet CAPture

PERL Compatible Regular Expression

Portable Document Format

Xiii

RAM Random Access Memory
RPM Resource Package Manager
SID Snort IDentification

SPAWAR Space and Naval Warfare Command

SQL Structured Query Language
SSH Secure Shell

TCP Transmission Control Protocol
URI Uniform Resource Identifier
VM Virtual Machine

VNC Virtual Network Computing
VRT Vulnerability Research Team
VTY Virtual Teletype Terminal
YAML YAML Ain’t Markup Language

Xiv

XV

ACKNOWLEDGMENTS

This project would not have been possible without the guidance and support of
my thesis advisors, Dr. Neil Rowe and Mr. Rex Buddenberg, without whom this paper
would have been a jumbled mess of ideas. I'd also like to thank Chris Gaucher, Director
of Cyber-Security and Privacy at NPS, and his team including Jason Cullum, Simon
McLaren, for granting me permission to conduct this research on the NPS network and
secondly for all of the ideas and discussion about intrusion detection here at NPS.
Thanks also to Lonna Sherwin and her server management team including Eldor Magat
for providing access to the hardware needed to conduct these experiments. Thanks for
answering all of my questions about server virtualization and configuration. I’d also like
to thank the many participants in the OISF user’s mailing group, especially Peter Manev,
Will Metcalf, Dave Remien, and Victor Julien for putting up with my endless barrage of
questions and providing me with the help that I needed to understand the nuances of

Suricata.

Most importantly I want to thank my amazing wife, Elizabeth, for her endless
patience and understanding as I spent countless days and nights away from our family.
Your love and support gave me the strength to make it to the end. Finally, thanks go to
my two boys, Elliott and Sean, the pride of my life, who have selflessly given up their

summer with Papa so I could complete my thesis. Ilove you both.

XVvi

THIS PAGE INTENTIONALLY LEFT BLANK

Xvil

I. INTRODUCTION

In spite of the many developments in network security over the past decade, the
Internet remains a hostile environment for our networked computer systems. According
to the Symantec Internet Security Threat Report for 2010, “The volume and
sophistication of malicious activity increased significantly in 2010 (Fossl, 2011).
Attacks by worms such as Stuxnet and exploits in commonly used programs such as
Adobe Acrobat are recent examples of the caliber and frequency of malicious activity
that is seen being crafted with today’s technology. It is no longer safe to ignore the
security threats that we face, and we continue to become more and more dependent upon

network connectivity and the Internet.

The threats are not only to computers and hardware that we connect to the
Internet, but to the data and information that resides within that infrastructure. More and
more we as a society are growing and developing our digital presence. Beyond just our
email, shopping habits, and bank account information, the data that is collected about us,
that defines us, exists in this hostile network of systems; and without a commensurate
increase in technologies to protect that data we risk compromise, theft, exploitation, and
abuse of the data that defines our digital selves, be it our individual, personal identity or

our corporate digital self, will cause real and significant damage in the real world.

The Naval Postgraduate School is one such institution where information is
processed on a large scale, stored, and transmitted over a diverse computer network.
Information security is crucial to protect and sustain the development of critical research.
Like many other government organizations the Naval Postgraduate School is constantly
being probed and attacked in an attempt to penetrate the defenses and obtain the
information within the NPS information domain. To defend against that, NPS has built a
robust defense architecture that monitors and guards the critical information against these
intrusion attempts. However this threat is not stagnant, and will continue to grow,

change, and adapt to the current network security technologies.

Consequently, we must continue to advance the development of new security
technologies to defend against the rising tide of malicious activity penetrating those
networks. Best practices in network security dictate that “defense-in-depth” (the strategy
of establishing multiple layers of defense around critical infrastructure to protect the data)
is an effective posture in defending against these attacks. One critical aspect of network-
security monitoring is the incorporation of intrusion-detection and intrusion-prevention
technologies within our defense-in-depth strategy (Kuipers & Fabro, 2006; Kumar &
Panda, 2011). An intrusion-detection system (IDS) monitors and logs the traffic that is
traversing a network for signs of malicious or unwanted activity, and generates an alert

upon discovery of a suspicious event.

There are two types of intrusion-detection systems, host-based and network-
based. A host based intrusion-detection system is a tool that resides on a network node,
or a computer that is connected to the network. Similar to a virus or malware scanner, it
scans traffic destined for that particular host for signs of malicious activity, then
generates alarms for those events. At an enterprise scale, these host-based systems are
widely deployed to send reports back to a centralized monitoring node where aggregation
and study of the collective threat picture can occur. A networked-based intrusion-
detection system is a device connected to the network in a manner similar to a network-
protocol analyzer, or “sniffer” as it is commonly called. But it goes one step beyond
simple packet capture and presentation to examine the contents of the packet data for
signs of malicious activity. A network-based intrusion-detection system monitors all of
the network traffic and upon sensing an intrusion, sends an alarm to a monitoring console
for further action. Multiple network-based intrusion detection systems can be deployed
throughout an enterprise at critical network junctures: the boundary link(s) to the Internet,
the trunk to the VIP computer systems, the ingress and egress points for the server farm

or data center, or the demarcation point of the enterprise wireless infrastructure.

Intrusion detection as part of network-security monitoring involves reviewing and
examining large amounts network traffic data. There are a number of ways to do
network-security monitoring using intrusion-detection engines. One is to monitor
network traffic in real time using a variety of tools that examine and interpret the traffic,

2

and output alerts as malicious traffic crosses the sensor on the network. This real-time
monitoring allows for an immediate response to any alarms generated by the intrusion
detection engine. The processing speed for real-time monitoring is bounded by the
maximum speed of the network interface card. Should the engine reside on a system with
a low-capacity network interface card, the card may quickly become overloaded with
network traffic and begin to drop packets. The more packets that are dropped, the greater
the chances of a malicious payload getting through the intrusion-detection layer of
defense. Therefore, the system running the detection engine should be capable of

processing traffic at a speed equal or greater to the maximum capacity of the network.

Another method is to use the intrusion-detection system engine for playback or
non-real-time analysis of archived traffic. This approach is more often applied to post-
incident network forensic analysis. Where real-time monitoring of network traffic is
bounded by the speed of the network interface card, forensic analysis of archived network
traffic is limited by the computing hardware and the detection engine software. It is
during forensic analysis that we will see the greatest performance increase by increasing

the computer’s processing ability in CPU, memory, and disk I/O speeds

There are presently two main categories of intrusion-detection, anomaly-based
and signature-based. Anomaly-based detection examines the network traffic from a
holistic perspective, looking for traffic that falls outside of what is considered normal
activity. Any such events are analyzed and if necessary, further investigation and
subsequent action is taken to mitigate the anomaly (Garcia-Teodoro, Diaz-Verdejo,
Macié-Fernandez, & Vazquez, 2009). Anomaly detection is good for discovering new,
previously unknown attacks in a relatively small network environment. Signature-based
intrusion-detection attempts to match network traffic data to a preloaded signature
database. Typically, these signature rules are generated from previously discovered
malicious traffic, but they can be custom crafted to match any sort of traffic flowing
through the network. Upon matching a signature rule the detection engine generates an

alert which is subsequently sent to the analyst for further action.

An example of a signature-based detection would be when the intrusion-detection

system generates an alert from an attempt by an attacker to create a reverse command
3

shell to an internal server. In this case, the attacker is attempting to gain unauthorized
access to a protected system within the network perimeter by attempting to pass to the
server a series of commands which would initiate a reverse connection to the attacker’s
computer. This type of attack could be detected by a signature-based system through the
commands that the attacker issues. One common command that a system scans for is
“c:/windows/cmd.exe.” An anomaly-based system would instead notice a command shell
request being generated from outside of the protected server enclave. Since this is not
considered normal activity for the traffic that flows to and from the Internet, this would
then be flagged as an alert. Other examples of behavior that would trigger an anomaly-
based alert might include after-hours access by a user who normally works during the
day, indicating possible unauthorized access; significant change in data traffic from one
area of the network to another, indicating possible data exfiltration; or an increase in data
communications between a growing number of workstations, indicating a possible worm

infestation.

In recent years, with the increase in complexity and frequency of Internet attacks,
intrusion detection has become significantly more important to a wider audience.
Numerous companies and organizations have been working to develop the technology
and have produced several products, both open source and proprietary. One of the most
popular and widespread open-source signature-based network intrusion-detection engines
is Snort, maintained by SourcFire (www.sourcefire.com). Originally developed to
monitor the application layer of network data packets, Snort was developed in 1998 by
Martin Roesch and is based on the Libpcap library (Roesch, 2005). The current modular
design of Snort in today’s version was settled on in 1999 with Snort 1.5. This modular
design allows developers to build and add-on additional features without the need to
rewrite the core detection engine. Snort has become the de-facto industry standard for
signature-based network intrusion-detection engines. An overview of the specific

capabilities of the Snort intrusion-detection system is in (Tenhunen, 2008).

Almost a decade later, in 2009, the Open Information Security Foundation (OISF)
released a new signature-based network intrusion-detection engine called Suricata.
Suricata is also an open-source signature-based network intrusion-detection engine

4

envisioned to be the next generation intrusion-detection/prevention system engine
(Jonkman, 2009). Significant funding for the project comes from the Department of
Homeland Security (DHS) Directorate for Science and Technology (S&T) Homeland
Open Security Technology (HOST) program and the Navy’s Space and Naval Warfare
Command (SPAWAR). As the OISF title implies, the development framework for
Suricata is open-source and is licensed by the GNU Public License v2 (OISF, 2011a).
One advance that Suricata incorporates is a new Hyper-Text Transfer Protocol (HTTP)
normalizer. Called the HTP library and developed independently for the Suricata project
by Ivan Ristic, it is an advanced HTTP parser developed for Suricata and the OISF that is
designed to be “security-aware,” meaning that it is capable of examining HTTP traffic for
the attack strategies and evasion techniques used by attackers to circumvent an intrusion-

detection system (Ristic, 2009).

Another advance in the Suricata engine is the ability to employ native multi-
threaded operations, something more necessary as network bandwidth increases (Nielsen,
2010). The typical Snort installation can process network traffic at a rate of 100-200
megabits per second before reaching the processing limit of a single CPU and dropping
packets to compensate (Lococo, 2011). That is because the current Snort engine is a
single-threaded multi-stage design (Roesch, 2010) and does not perform as well as
Suricata in a multi-threaded environment (Day & Burns, 2011). For Snort to take
advantage of the multiple processors, one would have to start a new instance of Snort for
each desired CPU, which could be a management challenge. Suricata is designed from
the outset to take advantage of operating with multiple CPUs (OISF, 2011a). This
required development of original detection algorithms from the ground up. Nonetheless,
the developers intend to support the same rule language used in the Snort rules; and when
the Suricata engine is more stable the OISF will make available Suricata’s extended

features (OISF, 2011a).

In Chapter 1I, we will review the challenges of intrusion-detection and look at
how Suricata and Snort attempt to address these challenges. We will examine other
works in the field of network security that compare the differences between Suricata and

Snort.

In Chapter III, we will introduce and describe our testing methodology for our
comparison of Suricata and Snort. We will discuss the setup of our experiments and the
steps involved in building the testbed. We will also introduce the supporting applications

required to complete our experiments.

In Chapters IV and V, we will present our results and conclusions respectively.
We will then discuss further research that can be done to compare the two engines, and

provide a recommendation for implementation of the Suricata intrusion-detection system.

II. PREVIOUS WORK

Intrusion detection is difficult to accomplish perfectly. With the volume of
network traffic rapidly increasing and the number and complexity of network attacks
increasing just as quickly, it becomes increasingly difficult for a signature-based
intrusion-detection system to keep up with the current threats (Weber, 2001). When a
system fails to generate an alarm, the result could be the compromise of critical data
within the network infrastructure. Worse, if the system generates too many false alarms,
the operators monitoring the system may become desensitized to the alerts and may

ignore a genuine alert in the future.

Four possible situations occur with alerts generated by an intrusion-detection
system: true-positive, true-negative, false-positive, and false-negative. The true positive
is when the detection engine generates an alert based on the correct identification of a
potential threat. The true negative is when a detection engine does not generate an alert
for normal traffic: this occurs during a benign network traffic flow. The false positive is
when a detection engine generates an alert for an event that is not malicious. The most
dangerous of conditions is the false negative when a detection engine does not alert on
malicious traffic, thereby allowing it to enter the network without notice. Accuracy in
intrusion detection can be measured by the number of false positives and false negatives

generated by the detection engine.

There are a number of ways that false positive and false negative conditions can
occur. Faulty rule design, including invalid signature information or improper rule
language, is one way, but this is rare. Similarly, rules may be imprecise because there is
no distinctive signature for a particular kind of attack. These types of error would result
in a false positive or false negative across all intrusion-detection engines using the same
rules. False positives and false negatives can also occur through performance problems
with the detection engine itself. To analyze a network traffic flow for signs of intrusion,
the detection engine must examine every packet that traverses the network wire. If the
hardware fails or becomes otherwise overused, it can drop one or more packets, allowing

a malicious packet to enter the network. Unlike a dropped packet in a router, in an
7

intrusion-detection system a dropped packet is not discarded at the detection engine, but
rather when an intrusion-detection engine drops a packet it passes through to the
protected network. This overload condition could be intentionally caused by an attacker
for the purpose of injecting malicious traffic. It is therefore important to measure the
performance capability of an intrusion-detection system to ensure that the system can

support the capacity of the network on which it is deployed.

One means to improve performance is to split the data stream between multiple
processing engines. However, any malicious bits that may be residing in a traffic flow
may get split too, resulting in neither engine matching the complete signature. To
mitigate this situation, either the detection engines must pass coordination information
between each other, further increasing the computational load on the system, or the
network traffic must be divided by a “flow-aware” network tap that can keep related data

together.

This research examines the Suricata intrusion-detection system (Shimel, 2010).
By containing the multiple threads within the same detection engine, a multi-threaded
detection engine can make intelligent decisions on how to split processing and can
coordinate signature detection between these threads all within the same detection engine.
Moore’s Law (Moore, 1965) predicts that computational speed doubles every eighteen
months for single threaded processing architectures. Multi-threaded processing can take
advantage of that prediction. According to Nielsen’s Law of Internet Bandwidth, we will
also see 50% increases in network bandwidth every year (Nielsen, 2010). The
performance of our intrusion-detection system systems should increase as our demand for
network bandwidth also increases. The developers of Suricata have chosen to address

that demand through multi-threaded processing (OISF, 2011a).

Considering that the most computationally intensive work performed by an
intrusion-detection engine is detection, the Suricata developers decided to use threads for
detection. Figure 1 gives an example with the creation of three detect threads. Suricata
can receive network traffic from the network interface card or from previously recorded

network traffic from a file stored in PCAP format. Traffic is passed through the decode

module where it is first decoded as per its protocol, then the streams are reassembled

prior to being distributed between the signature-detection modules.

Detect

Figure 1. Suricata multi-thread design (From OISF, 2011c¢)

The Suricata configuration file allows the user to configure which and how many
threads, and how many CPUs will be involved in the processing of each stream. Figure 2
illustrates how Suricata can distribute the various modules in the processing stream

across the different CPU cores in the computer.

CPU/CPU core-threads set_cpu_affinity: yes
Core 0 I PAQ DECCDE STREAM DETECT- OUTPUT
L 1 L DETECT
2 L DETECT
3 L DETECT
set_cpu_affinity: no
Example
Core 0 PAQ DETECT
1 [DECODE
2 I STREAM DETECT X2
3 [DETECT _ OUTPUT

Figure 2. Suricata multi-CPU affinity (From OISF, 2011c)

Previous work compared the performance of Snort version 2.8.5.2 to Suricata
version 1.0.2 (Day & Burns, 2011). Their testbed consisted of an Ubuntu 10.04 virtual
machine hosted in a VMWare Workstation 6.5 virtual environment running on a 2.8GHz
Quad-Core Intel Xeon CPU with 3GB of RAM. The study examined detection engine
speed as well as the accuracy under varying degrees of network and processor use. CPU
use was controlled using Cpulimit (cpulimit.sourceforge.net), network bandwidth was
controlled using Tcpreplay (tcpreplay.synfin.net), and alert generation was stimulated by
injecting six known malicious exploits generated using the Metasploit framework
(www.metasploit.com). The results show that Snort is more efficient with system
resources than Suricata, and when operating in a multi-CPU environment, Suricata is
more accurate due to fewer false negative alerts. However they concluded that the
overall performance of Suricata in a four-core environment was slower than that of Snort
in a single-core environment when processing 2 gigabytes of previously captured

network data.

In April 2011, Damaye (2011b) published an online report comparing the
accuracy of Snort and Suricata in detecting a wide variety of malicious files and
suspicious actions. His tests incorporated the latest versions of Suricata and Snort with
signature rules from both the Snort Vulnerability Research Team (VRT) and Emerging
Threats (ET). Creating a custom application in Python specifically designed to send a
variety of specific vulnerabilities through an intrusion-detection system via a number of
different vectors, he attempted to measure the accuracy of both detection engines.
During his tests he measured the number of true and false positives and negatives and
assigned a score to Snort and Suricata for each of the tests conducted. The results of his
study concluded that the two rule sets (VRT and ET) worked well together but required
tuning to be most effective. He further concluded that while Suricata is a promising new

technology with key features, Snort still is preferable for production environments.

Leblond (2001) ran a series of tests to examine the performance of the multi-
threading capabilities of Suricata. By adjusting the detect_thread_ratio and the
cpu_affinity variables in the Suricata configuration file on a dual 6-core CPU system with
hyper-threading enabled, he was able to achieve the best performance by reducing the

10

thread ratio to .125, which corresponded to three threads generated by Suricata in his test
environment. He also determined that the hyper-threading configuration caused
variations in the performance results (30% variation between runs) and that it was
actually best to configure the multiple threads to run on the same hardware CPU.
Following his initial research, in February 2011 Leblond dove deeper into the workings
of the Suricata multi-threading design. Using a tool called Perf-tool
(code.google.com/p/google-perftools) he was able to determine that, as the number of
threads increased, more time was spent waiting for an available lock. His conclusion was
that configuring Suricata to run in RunModeFilePcapAutoFp results in a steady
performance increase, whereas RunModeFilePcapAuto shows an initial increase, then a

continued decrease in performance as measured by packets per second processed.

11

THIS PAGE INTENTIONALLY LEFT BLANK

12

III. DESCRIPTION OF METHODOLOGY AND EXPERIMENTS

Our experiments tested and compared the Suricata and Snort intrusion-detection
engines in performance and accuracy in a busy virtual environment. The experiments
evaluated performance by measuring the percentage of CPU use, memory use, and
network use. We measured accuracy by subjecting both detection engines to malicious

traffic in controlled tests, and comparing the alerts generated by each application.

Traffic data for our experiments originated from a network tap located on the
backbone of the Naval Postgraduate School (NPS) Education Resource Network (ERN).
At the point of the network tap the NPS ERN has a bandwidth of 20 Gbps, providing a
large “pipe” to send traffic to our intrusion-detection system. Traffic across the NPS
backbone averages 200Mbps per day. We used this traffic to compare the performance

and alerts of the virtual machine while running Snort and Suricata.

Signatures for the experiments came from the two primary open-source intrusion-
detection system rule maintainers, the SourceFire Vulnerability Research Team (VRT)
and Emerging Threats (ET). The SourceFire VRT “develops and maintains the official
rule set” for Snort (SourceFire, 2011). Emerging Threats originally began as a
community-authored list of rules to augment the SourceFire VRT body of rules. Initially
considered less robust than the VRT rules, the ET rules now provide new capabilities.
Where the VRT rule set is specifically designed to support Snort exclusively, the ET rule
set is “platform agnostic” by design and will work on any type of open-source intrusion-
detection system application (Emerging Threats, 2011). Both Suricata and Snort support
the rules from VRT and ET.

Our research questions are:

1. Does Suricata with its multi-threaded processing perform better than Snort with

its single-threaded processing?

2. As CPU and memory use increase, are there differences in the number of

dropped packets between the two engines?

3. Will Suricata handle heavy loads better than Snort?
13

4. Is Suricata suitable to be implemented within the NPS production network? At
the time of the experiment, the NPS Information Technology Department was unsure

whether to use Suricata and was hoping our experiments would help them to decide.

A. EXPERIMENTAL SETUP

Most experiments were conducted in a virtual machine running VMware ESXi
4.1. The server hardware was a Dell Poweredge R710 dual quad-core server with 96 GB
of RAM. Each CPU was an Intel Xenon E5630 running at 2.4 Ghz. The data storage
was accomplished through three fiber-channel attached RAID 5 configured arrays,
supporting the relatively large network traffic capture files (PCAP files) needed to test
the detection engines. The server had eight 1Gbps network cards installed, with four
reserved for the various management activities and four available for the Virtual
Machine. For our experiments the server was configured with two interface cards, one
for system administration and one to capture network traffic. The interface card attached
to the network tap was configured in promiscuous mode to allow it to receive all of the
network traffic. Our virtual machine used 4 CPU cores and 16GB of RAM. The
operating system chosen for the experiment was CentOS 5.6 due to its popularity for

enterprise applications and close relationship to Red Hat Enterprise Linux.

Installation of Suricata was relatively straightforward. Precompiled versions of
Suricata were difficult to find due in part to the relative newness of Suricata compared to
Snort. So we compiled it. To do this we had to install a number of software
dependencies which were not included in the CentOS 5.6 distribution. Among these
were the Perl compatible regular expression (PCRE) libraries, packet-capture libraries
(Libpcap) to allow the operating system to capture all of the traffic on the network, and
YAML Libraries (libyaml) required to interpret Suricata’s YAML-based configuration
files (Ben-Kiki, Evans, & dot Net, 2010).

Initially, we started with version 1.0.3 of Suricata, but during the experiment the
Suricata developers released a major version change to 1.1 beta2. This version fixed

several key performance and rule issues that were present in the earlier versions (OISF,

14

2011a). After the initial installation the upgrade process was simple, involving only a

download of the 1.1beta2 source code and compiling it on the system.

Installation of Snort 2.9.0.5 on CentOS Linux distributions has a number of
known issues, namely compatibility with the version of Libpcap that is distributed with
CentOS prior to 5.6. Fortunately, Vincent Cojot maintains a series of RPMs
(precompiled software for installation on Red Hat-based Linux distributions) for Snort on
CentOS (vscojot.free.fr/dist/snort). Installation of Snort simply involved downloading
the latest Snort RPM and extracting the program. The required PCAP library was already
installed during the Suricata install so there were no other dependencies involved.
During the experiments the need to upgrade Snort 2.9.1 beta also became apparent due to
the large size of our PCAP files. Unfortunately Vincent Cojot’s RPM repository did not
contain the latest 2.9.1 beta version of Snort at the time, so we were unable to upgrade to

2.9.1 and conduct some of our planned tests.

Care must be taken to ensure that the proper version of rules is downloaded for
the corresponding intrusion-detection engine, or a significant number of errors will be
reported during startup in Suricata, and in the case of Snort the startup process will abort
altogether. The VRT web site does not maintain a separate set of rules optimized for

Suricata, so upon loading the VRT rules in Suricata we received a number of rule errors.

We also used Pytbull, a utility written in Python and designed by Sebastian
Damay to test and evaluate an intrusion-detection system’s ability to detect malicious
traffic (Damaye, 2011a) by sending it sample traffic. Installation of Pytbull was fairly
simple considering that several of the dependencies for Pytbull were already installed for
Suricata and Snort. Pytbull requires Python and Scapy (www.secdev.org/projects/scapy),

and the environment must have an FTP server and a web server available.

To capture live traffic from the network and replay that data for static file
analysis, the Tcpdump (tcpdump.org) and Tcpreplay (tcpreplay.synfin.net) utilities were
also required. Collection of the system performance data while running each of the

experiments was accomplished using the tool Collectl (Collectl.sourc